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A regular Ising model with nearest-neighbor interactions of J and - J  (J > 0) 
on a Cayley tree of coordination number 3 is investigated for the behavior of 
effective fields in a uniform external field. The effective fields show periodic and 
also aperiodic structures in the temperature-field plane. At absolute zero temper- 
ature, the equations determining effective fields are reduced to a nonlinear, 
one-dimensional, iterative equation. Arithmetic furcations of period and a 
"screening" of the furcations are observed. 
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1. I N T R O D U C T I O N  

The Ising model  on a Cayley tree is interesting not  only because the system 
can be treated exactly but also because the the rmodynamic  properties of 
the system at the central part  of the tree are the same as those of the Ising 
model  within the Bethe approximation.  The frustration effects due to 
compet ing  interactions of the regular Ising model, especially the so-called 
A N N N I  (axial next-nearest-neighbor Ising) model,  give a variety of mag-  
netic properties within the mean-field theory on regular lattices. (1-3) See 
also Selke and Fisher, (4) Fisher and  Selke, (5) etc., for other treatments of 
this model.  Recent ly  investigations of an Ising model  with frustration on 
the Cayley tree have been carried out  by Vannimenus  (6) and Inawashiro 
and  T h o m p s o n  (7) (see also Ref. 8). The regular Ising model  with ferromag- 
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netic nearest-neighbor (NN) and antiferromagnetic next-nearest-neighbor 
(NNN) interactions on the Cayley tree with coordination number 3 has 
been studied by Vannimenus (6) in the case in which the N N N  interactions 
between the sites on the same shell are vacant. He found the existence of a 
multicritical point at absolute zero temperature, where four phases such as 
ferromagnetic, paramagnetic, modulated, and antiferromagnetic with a 
(+  + - - )  periodicity meet. Inawashiro and Thompson (v) and Inawashiro 
et  al. (8) investigated the model in which all of the N N N  interactions 
participate. The frustration effects in their system are much more promi- 
nent than in the system studied by Vannimenus; the modulated phase is 
obtained even at zero temperature. 

The competition between the exchange interactions and the applied 
external field also produces frustration effects. Morita (9) studied a model 
with this type of frustration: a regular Ising model with only N N  interac- 
tions of two ferromagnetic bonds and one antiferromagnetic bond in a 
uniform external field on a Cayley tree with coordination number 3. He 
gave a brief report on the model in a previous letter. (9) It was pointed out 
that there exist paramagnetic, spin-glass, and spin-crystal phases. 

Since we want to know what happens in the system, we have investi- 
gated the structure of the effective fields. The behavior of the effective 
fields is quite curious, in particular at absolute zero temperature. There are 
two types of behavior for the period of the effective fields at zero tempera- 
ture: an arithmetic furcation for small values of effective fields and a 
"screening" of furcations for values of effective field near and less than J. J 
is the magnitude of the exchange interaction. An arithmetic furcation of the 
period means that a periodic orbit of period m 1 + m 2 appears at h', a value 
of a parameter involved in the mapping, satisfying h 1 < h' < h2, and two 
periodic orbits of period m z and m 2 exist at h I and h 2, respectively. 
"Screening" of furcations means that regions of special periodic orbits in 
the parameter space screen parts of the regions of other periodic orbits 
whose periods are obtained by arithmetic furcations. To study the arithme- 
tic furcation, we have investigated an Ising model with l bonds with J > 0 
and I bonds with - J  on a Cayley tree with coordination number 2l, with 
l i> 3 in a uniform external field at zero temperature. (1~ An exact analysis 
has been given for a one-dimensional mapping obtained from the iterative 
equations for the effective fields of the Ising model on the Cayley tree. (11) 

In the present paper, we report our detailed investigations of the 
system studied by Morita, (9) by focusing on the structure of the effective 
fields which satisfy nonlinear coupled iterative equations. We obtain a 
phase boundary between a phase with a shorter periodic orbit and a phase 
with a longer periodic orbit or an aperiodic orbit. We calculate correlation 
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functions of effective fields as a function of the shell number. The wave 
number associated with the shell number is calculated from the correlation 
functions. From the analyses, it turns out that the spin-crystal phase 
corresponds to commensurate phase with shell number and the spin-glass 
phase to the incommensurate phase. At zero temperature, the equations for 
the effective fields are reduced to a one-dimensional, piecewise linear, 
iterative equation. It is found by numerical calculations that the arithmetic 
furcations of period occur as a function of h for h <~ 2 J / 3 ,  where h is the 
external field, and that the dominant periods 14 and 7 screen some periods 
from arithmetic furcations for 2 J / 3  << h < J.  

In Section 2, we describe the Ising model on a Cayley tree and 
investigate a set of nonlinear equations for effective fields at finite tempera- 
ture. In Section 3, it is reduced to a set of piecewise linear iterative 
equations at absolute zero temperature. We find a projection of the 
two-dimensional mapping to a one-dimensional mapping and give detailed 
discussions on that one-dimensional mapping. Concluding remarks are 
given in Section 4. In Appendix A, we define a sequence of positive integers 
which is a representation of the periods when their furcation is arithmetic. 
In Appendix B, we give expressions of the regions on which the one- 
dimensional mappings are defined. 

2. ISlNG MODEL ON A CAYLEY TREE 

We consider the Cayley tree which has a central site 0 and N shells 
surrounding it. The coordination number of the tree is assumed to be 3. We 
label the shells in order from the outermost to the innermost, then the 
central site is on the Nth shell. The sites except those on the 0th shell (the 
0th shell is referred to as the surface of the Cayley tree) have three 
nearest-neighbor sites and those on the surface have only one nearest- 
neighbor site. There is an Ising spin on each site. Each spin except on the 
surface interacts with two nearest-neighbor spins by J > 0 and one nearest- 
neighbor spin by - J .  The spin directions are uniquely determined if the 
direction of the spin at the central site is up and there is no external field; 
there is frustration when the uniform external field is applied. 

We introduce two types of effective fields h} +) and h} -) to a site on the 
sth shell from the outermost branch, depending upon whether the interac- 
tion between the site and its nearest-neighbor site on the (s - 1)th shell is J 
or - J .  The effective fields h, (-+~ are determined as follows: 

exp(2flh} +)) = Zs + - ( + ) / Z +  - ( _ )  

exp(2fih} - ) )  = Zs + + ( + ) / Z ~  + + ( - ) 
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where 

Z, ++ ( o ) =  ~] exp[  fla'(h + 2 h } + ~ ) -  flJoa'] 
Or ~ 

+- (o)= Eexp[ Bo'(h + h}+__? + h}:?) + flJoo'] 
0 t 

h is the uni form external  field and ,8 = 1 / k T  as usual, h {-+~ are the (s-l)  
effective fields on a site on the (s - 1)th shell f rom the outermost  branch.  
The  iterative equations determining the effective fields are given by 

h} + ) =  ,8 -1tanh- l[ tanh( ,sJ )tanh ,8( h + h} +_ ~ + h}-~)] 
(2.1) 

h~ -)  = - ,8 - l t a n h -  ~ I tanh( ,sJ ) t anh /3  (h + 2h} _+ ~) ] 

At the surface, i.e., s -- 0, we assume h0 ~-+) = 0. This set of equations is a set 
of nonlinear,  coupled, iterative equations. We are interested in the behavior  
of effective fields in the limit of N ---> m. 

In order  to investigate the mapping (2.1), we introduce new variables 
x, = tanh ,sh} +), y,  = tanh ,sh} -), a = tanh ,sJ and b = tanh ,sh. Then  we 
have 

x s = a(b + x,_ 1 + Y , - I  + bx , - lY , -O / (1  + bx,-I + bys-I + X,-lY~-I) 

(2.2) 

ys = -,:,(b + 2x,_, + bxL, ) / (1  + 2bXs_l + xL , )  

where x 0 = Yo = 0. Equations (2.2) are expressed as follows: 

(x , ,  Ys) = ' t ' (xs_ ~, y~_ l) = ' t 'k(Xs-k, Y~-k) (2.3) 

An orbit is given by  ~2 = {(xs, Ys))~=0,1,2 . . . .  . The  orbit  is periodic if it is 
finite. The  period is defined by the least integral p such that there exists an 
integral M and for any integral i > M, (xi+ p, yi+a) = (x i, Yi). 

There  is only one fixed point  ( x ~ ,  y ~ )  of the mapping (2.3). x~  is 
determined as the positive root  of the equation: 

b(1 - a )x  4 + (1 - 3a + 2b 2 -  ab 2 + a2b2)x 3 + 3b(1 - a)2x 2 

+ ( 1 -  a -  3ab2 + Za2 + a2b2)x-  a b ( 1 -  a )=O (2.4) 

y ~  is given by 

y~  = - a ( b  + 2x~ + bx2) / (1  + 2bx~ + x~)  (2.5) 

These equations (2.4) and (2.5) are equivalent to those obta ined by 
Morita.  (9) By expanding x s and y~ around the fixed points, we find the 
region where the fixed point  is stable. The  region is determined by the 
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following condit ion:  

where 

2d+ d_ < 1 

d+ = a(1 - x~)(l - b2)/(l + bx~  + by~ + x~y~) 2 

d = a(1 - x~ ) (1  - b2) / (1  + 2bx~ + x ~ )  2 

This region is the ha tched  one with n u m b e r  1 in Fig. 1. The  spin state in 
this region corresponds  to the pa ramagne t i c  state. W h e n  h = 0, x ~  - - y ~  
= 0, and  d + - - d  = tanh flJ. The  critical t empera ture  T c between the 
pa ramagne t i c  phase  and  the other  phase  is given by  

J / k T  c = t a n h - l ( 1 / f l 2 )  

We  obta ined  numer ica l ly  the values of effective fields f rom the set of 
equat ions (2.2). At  low temperatures ,  Eq. (2.2) are not  suitable for numeri-  
cal calculations. Then  we use the following expansions ob ta ined  f rom Eq. 

1.2 
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Fig. 1. The phase diagram in the temperature-field plane is shown. We have periodic orbits 
in the hatched regions. The number attached to the region shows the period of orbits. We have 
longer periodic or aperiodic orbits in the regions not hatched. 
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(2.1): 

1 h ~+)+h}-?l- IJ h ,o,_, h~ +~ = g {IJ + h + s - I  -- -- ~ ( + ) -  h}--~l} 

( - l )  ~  
n = l  " !  [ e x p ( - 2 B n l J  + h + h}._+~ + h}-~l ) 

- e x p ( - 2 B n l J -  h -  h}_+} - h}2~l)] 

h} -)  = - -~ {IS + h + 1  2h (+)~_, - I J  - h - 2h}+~l } 

n=, n---T--. [ exp ( -2Bn lJ  + h + 2h}_+~l) 

- e x p ( - 2 / ~ n [ J -  h -  h}+~[)] 

We found periodic orbits in some regions in the T-h  plane, Some of them 
are shown in Fig. 1 by the hatched regions. For  an aperiodic orbit, we have 
an at tractor  which seems to be a continuous closed curve. For  a periodic 
orbit, it collapses to a discrete set of points. In the numerical  calculations, 
we cannot  discriminate between a longer periodic orbit and an aperiodic 
orbit. In order  to find boundaries  in the T - h plane at which an aperiodic 
orbit  turns to a periodic orbit, we calculated the Lyapunov  exponent  
defined by Vannimenus  (6) and obta ined a negative exponent  for a periodic 
orbit  and zero for an aperiodic orbit. However,  we failed to find the 
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ti;x, l!,!t ,s l l ! l,, / 
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I _ _ ~ J _ _  t 
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Fig. 2. The  au tocor re la t ion  funct ions  of x~ and  y ,  are shown as a funct ion of shell n u m b e r  m 

for k T / J = 0.6 a n d  h / J = 0.5. 
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boundaries. It turned out by further calculations for values of effective 
fields with more decimal places for T and h that the regions for periodic 
orbits intervene between those for an aperiodic orbit in whisker shapes and 
vice versa, as partly seen in Fig. 1. We did not show there the regions for 
longer periodic orbits. Then in the regions which are not hatched, there 
exist longer periodic or aperiodic orbits. 

In a prevous letter, (9) a spin state determined by a periodic orbit is 
called a spin-crystal state and that by an aperiodic orbit the spin-glass state. 
In order to see the behavior of effective fields in the region of longer 
periodic or aperiodic orbits, we define autocorrelation functions of x s and Ys 
as follows: 

N 

C + ( m ) =  lim 1 
j = l  

N 

C _ ( m ) =  lim 1 
j = l  

where 
N 

= lim l 

N 
1 ~ - -  lim 

The behavior of C_ (m) as a function of m is much the same as the one of 

o6 I 
O 4  

O 2  

C+[rn] 

o.o 

0.2 

+04 

-o.6 

h=O.5J  

I I I l 
kT=O.5J  - -  kT=O.7J  - - -  kT=O.9d  - - - - -  

�9 .. " ~ ' r,\ �9 .~F~ " /," ' ' ;,.. ' "/\ " ".4 

/,I /,,i /I:I /t, I/I,I l,tl ;I' I/I,, 
Ii',:/7!~I-/!il//%"; "~" I! "\"" ;,//Lt'.i!;IIs163 "+" ~' ...... i' -;F'~ '/Y" ! ~'\ ~I."t 

_ V V V V V  VVV 
I I 

l O  2 0  3 0  

l O 0 0  1 0 2 0  

I 

l O l O  

Fig. 3. The  au tocor re la t ion  func t ion  of x s is shown as a func t ion  of shell  n u m b e r  for values  

of t empera tu re  kT/J = 0.5, 0.7, and  0.9 at  a fixed external  field h/J = 0.5. 
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C+ (m). For example, see Fig. 2, where we show the behavior of C+ (m) 
and C_ (m) for h/J = 0.5 and kT/J = 0.6. Thus we consider only C+ (m) 
hereafter�9 In Fig. 3, we show C+ (m) and C+ (m + 1000) for kT/J = 0.5, 
0.7, and 0.9 and for h/J = 0.5. We see from Fig. 1 that C+ (m) is periodic 
for kT/J = 0.5 and h/J = 0.5. We believe that the amplitude of C+ (m) 
does not decay as a function of m even for aperiodic cases, although 
whether an orbit is periodic with long period or aperiodic is hard to 
determine by numerical calculations�9 In Fig. 4, we show C+(m) for 
h/J = 0.1, 0.4, and 0.7, and for kT/J = 0.5. C+ (m) is aperiodic but seems 
to be almost periodic. In case where C+ (m) changes its sign as a function 
of m, we regard the quantity defined by the following equation as the wave 
number: 

N 
q = lim 1 N~,~ ~ ~ 0(-- C+ (re)C+ (m + 1)) 

m = l  

where O(x)=l for x > 0 ,  1/2 for x = 0 ,  and 0 for x < 0 .  We set q = l  
when the fixed point is stable. In Fig. 5, we show q-1 as a function of 
temperature for h/J = 0.2, 0.4, 0.6, and 0.8. In the regions of periodic 
orbits, the effective fields are commensurate with shell number and in the 
regions of aperiodic orbits, the effective fields are incommensurate. In Fig. 
6, we show q - ]  as a function of external field for kT/J = 0, 0.2, 0.4, 0.6, 
and 0.8. Regions of h where the effective fields are commensurate are 
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Fig.  4. The  a u t o c o r r e l a t i o n  f u n c t i o n  of x s is s h o w n  as a f u n c t i o n  of  shell  n u m b e r  for  va lues  

of ex te rna l  field h/J = 0.1, 0, 4 a n d  0.7 a t  a f ixed t e m p e r a t u r e  kT/J = 0.5. 
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Fig. 5. 
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The inverse of the wave n u m b e r  is shown as a function of temperature for values of 
external field h/J = 0.2, 0.4, 0.6, and 0.8. 
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of t empera tu re  kT/J = 0.0, 0.2, 0.4, 0.6, and 0.8. 
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d o m i n a n t  at low temperatures,  bu t  those where the effective fields are 
incommensura te  are d o m i n a n t  at high temperatures.  This is due to the 

competi t ion between the ordering energy and  the thermal  agitation. At  

T = 0 in Fig. 6, q -  1 has several j u m p i n g  points  forq - ] > 7. We will discuss 
the case of T = 0 in  the next  section. 

3. E F F E C T I V E  F I E L D S  A T  T =  0 

In  the present  section we investigate the behavior  of effective fields at 
absolute zero temperature.  At  T =  0, equat ions (2.1) are reduced to the 
following ones: 

+) = �89 ( I J  + h + h}_+? + - IJ  - h - h - h}_-?l } 
(3.1) 

h} - )  = - �89  + h + 2h}+~l - I J -  h - 2h ~-)~_]} 

with h~0 • - -0 .  We performed numer ica l  calculat ions of this set of iterative 

equat ions  for h < J .  The period of orbit  ((h~+),h~-)))s=0,1,2 . . . .  with ~ 
h~o -~) = 0 is given in Table  I. The critical values of h at which the period 

Table I. The Critical Values of h at which the Period 
Changes Listed up to the Fourth Decimal Place 

h ,/J Width p q - 

0,0244--0.1001 0.0757 17 5.667 
0,1001~0.1004 0.0003 45 5.625 
0.1004-~.1098 0.0094 28 5.6 
0.1098~0.1110 0.0012 39 5.571 
0.1110--4).111l 0.0001 50 5.556 
0.1111--0.1112 0.0001 61 5.545 
0.1112~0.2308 0.1196 11 5.5 
0.2308-4).2309 0.0001 50 5.556 
0.2309~0,2311 0.0002 39 5.57 I 
0.2311--0.2333 0.0022 28 5.6 
0.2333--0.2334 0.0001 45 5.625 
0.2334--43.2478 0.0144 17 5.667 
0.2478--0.2497 0.0019 23 5.75 
0.2497~0.2500 0.0003 29 5.8 
02500--0.5385 0.2885 6 6 
0.5385~0.5386 0.0001 31 6.2 
0.5386--0,5393 0.0007 25 6.25 
0.5393--0,5434 0.0041 19 6.333 
0.5434--0,5435 0.0001 32 6.4 
0.5435--0.5671 0.0236 13 6.5 
0.56714.5672 0.0001 33 6.6 
0.5672--0.5708 0.0036 20 6.667 
0.5708~0.5714 0.0006 27 6.75 
0.5714--0.5715 0.0001 34 6,8 
0.5715--0.6667 0.0952 7 7 

i INI 



h/J 

Table I. (Continued) 

Width p q-1 

0.6667--0.6875 
0.6875--0.6876 
0.6876--0.6925 
0.6925--0.6927 
0.6927--0.6931 
0.6931--0,6942 
0.6942~0.6961 
0.696110.6962 
0.6962--0.6963 
0.6963--0.7001 
0.7001~0.7008 
0.7008-0.7012 
0.7012--0.7013 
0.7013--0.7014 
0.7014--0.7102 
0.7102--4).7103 
0.7103--0.7110 
0.7110--0.7112 
0.7112--0.7135 
0.7135--0.7136 
0.7136--0.7500 
0.7500--0.7501 
0.7501--0.8000 
0.8000--0.8001 
0.8001--0.8125 
0.8125--0.8126 
0.8126--0.8400 
0.840(~-0.8401 
0.8401--0.8425 
0.8425--0.8426 
0.8426-0.8450 
0.8450~).8451 
0.8451--0.8500 
0.8500--0.8501 
0.8501-0.8700 
0.870(~0.8701 
0.8701--0.8750 
0.8750--0.8751 
0.8751~.8800 
0.8800~0.8801 
0.8801~.9000 
0.9000~.9001 
0.9001--0.9200 
0.9200--0.9201 
0.9201-0.9250 
0.9250--0.9251 
0.9251-0.9375 
0.9375--0.9376 
0.9376--0.9400 
0.9400--0.9401 
0.9401--0.9500 

0.0208 
0.0001 
0.0049 
0.0002 
010004 
0.0011 
0.0019 
0.0001 
0.0001 
0.0038 
0.0007 
0.0004 
0.0001 
0.0001 
0.0088 
0.0001 
O.OO07 
0.0002 
0.0023 
0.0001 
0.0364 
0.0001 
0.0499 
0.0001 
0.0124 
0.0001 
0.0274 
0.0001 
0.0024 
0.0001 
0.0024 
0.0001 
0.0949 
0.0001 
0.0199 
0.0001 
0.0049 
0.0001 
0.0049 
0.0001 
0.0199 
0.0001 
0.0199 
0.0001 
0.0049 
0.0001 
0.0124 
0.0001 
0.0024 
O.O001 
0.0099 

f 

14 
7 

14 
29 
14 
22 
14 
37 
14 
15 
30 
14 
67 
37 
14 
67 
14 
23 
14 
38 
14 
7 

14 
7 

14 
15 
14 
7 

14 
29 
14 
22 
14 
15 
14 
23 
14 
7 

14 
15 
14 
7 

14 
8 
14 
15 
14 
7 

14 
15 
14 

7 
7 
7 
7.25 
7 
7.333 
7 
7.4 
7 
7.5 
7.5 
7 
7.444 
7.4 
7 
7.444 
7 
7.667 
7 
7.6 
7 
7 
7 
7 
7 
7.5 
7 
7 
7 
7.25 
7 
7.333 
7 
7.5 
7 
7.667 
7 
7 
7 
7.5 
7 
7 
7 
8 
7 
7.5 
7 
7 

7 
7.5 
7 
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changes are listed up to the fourth decimal place in Table I for h between 
0.0244J and 0.95J. We express in Table I that the per iodpl  appears at each 
value of h such that hl ,h  I + Ah . . . . .  h 2 - 2~h when the row is h I - h2, Ah, 
Pl, ql- 1. We see that the behavior of the period as a function of h changes at 
0.6667J. For h < 0.6667J, it seems that we have arithmetic furcations of 
period. Here the arithmetic furcation of the period means that a periodic 
orbit of period m~ + m 2 appears at value of h' satisfying h 1 < h' < h 2 where 
h 1 and h 2 are fields for which orbits of period m I and m 2, respectively, are 
stable. For h < 0.0239J, although we do not give the results in Table I, we 
seem to have P(6m + l l , 6 m  + 17) with m = 1,2 . . . . .  See Appendix A for 
the definition of a sequence P(m,  m'). For h >/0.75J, we found a regularity 
in the results; a set of periods for 0.75J < h < 0.95J appears repeatedly in 
the following ranges with N = 1, 2 . . . .  : 

N N + I  

0 .75+  • 0 � 9 1 4 9  2 0�9 
n = l  n = l  

We therefore do not place the results for h t> 0.95J in Table I. 
We denote equations (3.1) as follows: 

(h i +),h} - ) )  = r h~s +_ ~ ,h~- ?) = r h(s +_ ) k ,h~5 )k ) 

where ~ is a continuous and piecewise linear mapping�9 When h < J ,  we 
have an unstable fixed point (0, - h). When h = J,  we have a line of stable 
fixed points expressed by the set {(x ,y)10  < x < J,  y = - J } .  When 
h > J,  we have a stable fixed point (J, - J ) .  Thus we investigate in detail 
only the case of h < J.  

We define the following regions E, E 5, and K: 

E =  ( ( x , y ) ] l x + y + h  I < J , [ z x + h  I < J }  

E 5 = ( ( x , y ) l ( x , y )  ~ E, lY + h -  x[ < J, Ix + y  + 3h/2[ < J / 2 }  

K =  {(x ,  y ) l l x  I <.< J, y =  - J  } 

Every point (x, y)  in R 2 _  E5 is mapped  into the region K within five 
operations of the mapping. Every point of E 5 is mapped into E and then 
possibly to a point in E 5 itself. When points ~r ~ - ) a s + j  s+j., are in E 5 for 
j = 0, 1, 2, l - 1, then h r -+) f o r j  = 1,2, l take the following forms: 

�9 " �9 , s + j  " �9 �9 , 

h(~+)t = a,+Eh(~ +) + al+,(h(~ -) + h) 

h~+)t = -2a t+lh}  +) - 2 a , ( h } - )  + h ) -  h 

Here a t are determined by the recurrence equation: 

al+ 2 = at+ 1 - 2a t 
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w i t h  a I = 0 a n d  a 2 = 1. a t i s  e x p r e s s e d  a s  f o l l o w s :  

1 
at  = 2 ( 1 / 2 ) ( t +  l ~ s i n ( l  - 1 ) 0  

O- 
where 

0 = sin_ 1 ~ -  
24Y 

Then  the point  tt,(+~ ~ ( - h  satisfies the relation: 

2h}+2~ + h(,+2(h}~_] + h )  + (h(~+ ] + h )  z 

= 2'{2h}+)2 + h} +)(h}-)  + h) + (h,(-) + h) 2} 

Thus  there exists for  each point  (hs(+),hs ( - ) )  in E s a n u m b e r / V  such that 

2h 2 + 5 h J + 4 J  2 1 -  1 

l~ h(+)[h(-)s t s + h )  + ( h } - ) +  h )  2 J 

and the point  (h(~+], h}+]) f o r j  > A7 should already be outside of E 5. In this 
way, every point  in R 2 except the unstable fixed point  (0, - h) is mapped  to 
the set K. 

We consider a project ion of the two-dimensional  mapping qb to a 
one-dimensional  mapping q0 k defined by 

h(+~,+k = ~~ (h} +)) (3.2) 

Here  Eq. (3.2) denotes the following equation:  

( h } + ~ , h } + ~  = - J )  = r s +),h}-)  = - J )  

where we assume that h(s+] v ~ - J  for 1 < j < k. In Eq. (3.2), the subscript 
k of q~k is also a funct ion of h} +). The  periodic orbit  of h} +) determined by 
(3.2) is {h}+),h}[_)~,,h(~f~,+k2 . . . .  }, Obtaining the q~ is e lementary but  
tedious. We give only the results. We  consider 15 regions R t ,  R 2 . . . .  , RI5 
in the h - x plane which are shown in Fig. 7; their expressions are given in 
Appendix  B. q0 k is given on these regions as follows: 

q~l = x - J + h in R 1 , q~5 = J in R z , % = 4 x  - J + 4 h  in R 3 

% = J - 2h in R4, ~ 5  = 6 x  - -  J + 2h in R 5 , r = 5 x  + J - h i n  _R 6 

r = 2x  + J - 4h in RT, ~4 = 4X + J - 2h in R s , q% = J in R 9 

qo4= - x + 3 J  - 3 h  in  R l o ,  qz4 = 2 x  + 3 J  - 2 h  in  R l t  , 

~4 = 4x + 3 J  in R12 q0 4 = J - 2h in RI3 , qO 3 = J in R14 
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Fig. 7. 
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The regions in the h - x  plane are shown. At each region, we have a different, one- 
dimensional mapping q~k- 

and 

q~3 = - 3 x  + J -  h in R15 

The function q~ is piecewise linear for - J  < x < J at a fixed h. 
cp~ is shown by solid lines in Figs. 8a-1 for h = 0.1J, 0.11J, 0.2J, 0.24J, 

0.3J, 0.4j, 0.5J, 0.6J, 0.T J, 0.S J, 0.g J, and 0.91J, respectively. The pro- 
cesses of the mapping are shown by the broken lines. Suppose that a 
broken line starting from a point belonging to the set of periodic points 
visits cpk Pk times before it comes back to the starting point; then the period 
is given by 

p= t) l+4t, 4+595 
For example, we have period 39 and 11 in Figs. 8b and 8c, respectively, 
and period 7 and 14 in Figs. 8k and 81, respectively. 

First we consider the cases of 0 < h < 7J /13 .  In Figs. 8c, 8d, and 8e, 
we show how an orbit of period 17 is obtained between the orbits of period 
11 and 6. We notice that there are several types of periodic orbit with the 
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Fig. 8. The one-dimensional mapping q0 k and the processes of the mapping are shown in 
from (a) to (1) for h/J=O.l, 0.11, 0.2, 0.24, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.91, 
respectively. 
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same period. For example, there are three types of periodic orbit of period 
11: { J , h , - J  + 8 h , - 2 J  + 9h}, { J , h , J -  2 h , - h } ,  and { J -  2 h , - h , J -  
6h, - 5 h } .  Since the number of times of visiting the dangler of 095 changes 
with the values of h, we obtain a sequence of periods P(11, 6) for J /9  < h 
< 7J/13. Similarly, we obtain a sequence of periods P(17, 11) for J / 4 1  ,<< h 
< 3J/13,  a sequence of periods P(23, 17) for J/169 < h < J /10 and so on. 
As an example, we show in Fig. 8b an orbit of period 39 which is obtained 
between the orbits of period 28 and 11; the orbit of period 28 is obtained 
between the orbits of period 17 and 11 in Figs. 8a and 8c, respectively. We 
have the following relations from Eq. (A1): 

P ( l l , 6 )  = P ( l l ,  17) + P(17,6) 

= P(11, 17) + P(17, 23) + P(23, 6) 

= lim (11 + 6 ( j -  1), 11 + 6j) + P ( l l  + 6N,6) 
N---~ ~ 

This relation is confirmed in Table I in the range of h: 0.1112J < h < 
0.5385J. Second, we consider the case of J//4 < h ~< 2J//3. As seen from 
Figs. 8e-h, q01 in R 1, 995 in R2, q% in Rs, and r in R 9 determine the orbits. 
Since the number of times of visiting the dangler of 995 changes with the 
value of h, we obtain a sequence of periods P(6, 7) for J / 4  < h ~< 2J//3. 
Lastly, we consider the case of 2 J / 3  ~< h < J. As shown in Figs. 8i-1 we 
encounter a new situation. We have the q04 in Rl0 , which is a line with slope 
- 1. As the external field increases, only this part survives for q04. This q04 
stabilizes orbits with periods 14 and 7. Thus the arithmetic furcation due to 
the ep5 in R 6 is "screened" by the q04 in Rl0. We call this phenomenon a 
"screening" of the furcations. This is seen for 2J/3 < h < J. 

The inverse of the wave number, q -  1, defined in Section 2 is expressed 
as follows: 

q - '  ~_/O/(P 4 "1- 125) 

q-~ is also given in Table I. The generation of several jumping points at 
T = 0 in Fig. 6 mentioned in Section 2 is now understood. 

4. C O N C L U D I N G  R E M A R K S  

In the present paper, we have investigated the behavior of effective 
fields for the regular Ising model with nearest-neighbor interactions of 
J > 0 and - J  on the Cayley tree of coordination number 3 under the 
uniform external field. The frustration effects between the exchange inter- 
actions and the uniform external field produce curious behaviors of the 
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effective fields; the effective fields have periodic and aperiodic structures as 
a function of shell number. At T = 0, only periodic structures appear. The 
period of the effective fields furcates as a function of the external field. 
There are the arithmetic furcations and the "screening" of the furcations in 
the present systems. The arithmetic furcation is popular in physical systems 
with frustration (see, for example, Aubry, (12) Bak,(13) and Aubry (14)). 

It  is confirmed by numerical calculations that the screening of the 
furcations also occurs at finite temperature, more precisely at the low- 
temperature region surrounded by that of period 7 in Fig. 1. We believe 
that the screening of the furcations is a new type. It would be much more 
interesting if the screening of the furcations occurs in more realistic 
systems. As mentioned by Morita, (9) the system studied in the present 
paper  is regarded as a model for the Ising model on the honeycomb lattice 
in which each ferromagnetic hexagon is connected to the surrounding six 
ferromagnetic hexagons by antiferromagnetic bonds. Here the ferromag- 
netic hexagon means that each bond in the hexagon is ferromagnetic. It  is 
expected that the screening of the furcations occurs in that Ising model on 
the honeycomb lattice. Investigations of such system are left to future 
works. 

APPENDIX A 

We define sequences of positive integers related to two different 
positive integers, m and m', in this appendix. 

Consider a sequence { m, rn'} and denote it by Po(m, m'). Let us call m 
and m' a successive pair in Po(m, m'). We insert m + m' between m and m'  
and obtain a new sequence (m,m + m',m'}. We denote it by Pl(m,m'). Let 
us call m and m + m ' ,  and also m + m '  and m'  successive pairs in 
Pl(m, m'). For every successive pair m 1 and m 2 in sequences Pn(rn, m'), we 
calculate m 1 + m 2 and insert it between m~ and m 2. Then we obtain a new 
sequence P,+l(m,m'). Let us call m 1 and m I + m 2, and also m I + m 2 and 
m2, for each successive pair m I and m 2 in P,(m,m'), successive pairs in 
P,,+l(m,m'). In this way, we can define sequences Po(m,m'),Pl(m,m'), 
P2(m,m') . . . . .  inductively. Finally, we define an infinite sequence of 
positive integers by 

P(m,m') = lim Pn(m,m') 

We define an addition of two sequences Pn(m,m + m') and P,,(m + m',m') 
by 

Pn(m,m') = P,,(m,m + m') + Pn(m + m',m') 
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Then we have the following relation: 

P(m, m') = P(m, m + m') + P(m + m', m') (A1) 

We look into the structure of the sequence P(m,m'), then we find 
infinitely many arithmetic progressions in P(m, m'). When the period of the 
oribit in a mapping takes on all the numbers in the sequence P(m, m') as a 
function of parameter involved in the mapping, we say that an arithmetic 
furcation of period takes place between m and m' as a function of the 
parameter. 

APPENDIX B 

We give the expressions of 15 regions, which are shown in Fig. 7, in the 
following: 

R l = (0 < 

R2= (x < 

R3--" ( x <  

R 4 =  { h >  

R s =  (x < 

R 6 =  (x~< 

R7= ( x <  

R8= { h >  

R 9 = 

R10 = 

RI1 = 

R12 = 

RI3 = 

RI4 = 

R15 = 

h < J, ( J -  h)/2 < x <<. J } 

( J  - h ) / 2 ,  x >~ J / 2  - h, x > ( J  - h ) / 3 ,  x >~ h / 5 }  

J / 2 -  h ,x  > l ( J -  3h)/2, x >l h} 

0, x < ( J - 3 h ) / 2 ,  x/> h} 

h,x  < ( J -  h)/3, x < 2 J -  3h, x > l ( J -  3h)/Z, x l > ( J -  h)/6} 

hi5, x <<. ( J -  h)/2, x >i 2 J -  3h, x >~ ( J -  h)/6} 

h ,x  < ( J -  3h)/2, x >>1 - h , x  >.>(-J + 5h)/2) 

0, x <  - h , x / > ( - J + 3 h ) / 4 }  

(0 < h << J/7 ,  x <.< ( - J  + 3h)/4, x >~ - J / 2 }  

+ (x  < ( - J  + 5h)/2, x < ( J -  h)/6, 

x < 2 J - 3 h ,  x >~ - J / 2 ,  x >~ - J - t  7 h) 

(x  < ( J -  h)/6, x >i 2 J -  3h, x >1 - h / 3 ,  x >1 3 ( - J +  h)/2} 

(x  < - J  + h ,x  < - h / 3 ,  x >l - h , x  >13(-J  + h)/2} 

( z  <. - J / 2 ,  x <. - h, )c >~ - ( s  + h ) / 2 ,  x >~ ( -  3 j  + h)/4) 
{0 < h < J/3 ,  - J  ~ x < - ( J  + h) /2)  

{JI3  < h < 3] /5 ,  - J  < x < ( - 3 J  + h)/4} 

+ ( 3 J / 5  << h < J , x  < 3 ( - J + h ) / 2 ,  x <  - h / 3 ,  x >1 - J }  

(h < J, x < 3 ( - J  + h)/2, x >1 - h / 3 }  
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