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Behavior of the Effective Fields for a Regular
Ising Model on the Cayley Tree
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A regular Ising model with nearest-neighbor interactions of J and —J (J > 0)
on a Cayley tree of coordination number 3 is investigated for the behavior of
effective fields in a uniform external field. The effective fields show periodic and
also aperiodic structures in the temperature-field plane. At absolute zero temper-
ature, the equations determining effective fields are reduced to a nonlinear,
one-dimensional, iterative equation. Arithmetic furcations of period and a
“screening” of the furcations are observed.
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1. INTRODUCTION

The Ising model on a Cayley tree is interesting not only because the system
can be treated exactly but also because the thermodynamic properties of
the system at the central part of the tree are the same as those of the Ising
model within the Bethe approximation. The frustration effects due to
competing interactions of the regular Ising model, especially the so-called
ANNNI (axial next-nearest-neighbor Ising) model, give a variety of mag-
netic properties within the mean-field theory on regular lattices.('~® See
also Selke and Fisher,'® Fisher and Selke,’¥ etc., for other treatments of
this model. Recently investigations of an Ising model with frustration on
the Cayley tree have been carried out by Vannimenus(® and Inawashiro
and Thompson'? (see also Ref. 8). The regular Ising model with ferromag-
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netic nearest-neighbor (NN) and antiferromagnetic next-nearest-neighbor
(NNN) interactions on the Cayley tree with coordination number 3 has
been studied by Vannimenus'® in the case in which the NNN interactions
between the sites on the same shell are vacant. He found the existence of a
multicritical point at absolute zero temperature, where four phases such as
ferromagnetic, paramagnetic, modulated, and antiferromagnetic with a
(+ + — —) periodicity meet. Inawashiro and Thompson'” and Inawashiro
et al® investigated the model in which all of the NNN interactions
participate. The frustration effects in their system are much more promi-
nent than in the system studied by Vannimenus; the modulated phase is
obtained even at zero temperature.

The competition between the exchange interactions and the applied
external field also produces frustration effects. Morita® studied a model
with this type of frustration: a regular Ising model with only NN interac-
tions of two ferromagnetic bonds and one antiferromagnetic bond in a
uniform external field on a Cayley tree with coordination number 3. He
gave a brief report on the model in a previous letter.® It was pointed out
that there exist paramagnetic, spin-glass, and spin-crystal phases.

Since we want to know what happens in the system, we have investi-
gated the structure of the effective fields. The behavior of the effective
fields is quite curious, in particular at absolute zero temperature. There are
two types of behavior for the period of the effective fields at zero tempera-
ture: an arithmetic furcation for small values of effective fields and a
“screening” of furcations for values of effective field near and less than J. J
is the magnitude of the exchange interaction. An arithmetic furcation of the
period means that a periodic orbit of period m, + m, appears at &', a value
of a parameter involved in the mapping, satisfying &, < b’ < h,, and two
periodic orbits of period m, and m, exist at h; and h,, respectively.
“Screening” of furcations means that regions of special periodic orbits in
the parameter space screen parts of the regions of other periodic orbits
whose periods are obtained by arithmetic furcations. To study the arithme-
tic furcation, we have investigated an Ising model with / bonds with J > 0
and / bonds with —J on a Cayley tree with coordination number 2/, with
! > 3 in a uniform external field at zero temperature.'® An exact analysis
has been given for a one-dimensional mapping obtained from the iterative
equations for the effective fields of the Ising model on the Cayley tree.(!D

In the present paper, we report our detailed investigations of the
system studied by Morita,'” by focusing on the structure of the effective
fields which satisfy nonlinear coupled iterative equations. We obtain a
phase boundary between a phase with a shorter periodic orbit and a phase
with a longer periodic orbit or an aperiodic orbit. We calculate correlation
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functions of effective fields as a function of the shell number. The wave
number associated with the shell number is calculated from the correlation
functions. From the analyses, it turns out that the spin-crystal phase
corresponds to commensurate phase with shell number and the spin-glass
phase to the incommensurate phase. At zero temperature, the equations for
the effective fields are reduced to a one-dimensional, piecewise linear,
iterative equation. It is found by numerical calculations that the arithmetic
furcations of period occur as a function of & for A < 2J/3, where A is the
external field, and that the dominant periods 14 and 7 screen some periods
from arithmetic furcations for 2J/3 < h < J.

In Section 2, we describe the Ising model on a Cayley tree and
investigate a set of nonlinear equations for effective fields at finite tempera-
ture. In Section 3, it is reduced to a set of piecewise linear iterative
equations at absolute zero temperature. We find a projection of the
two-dimensional mapping to a one-dimensional mapping and give detailed
discussions on that one-dimensional mapping. Concluding remarks are
given in Section 4. In Appendix A, we define a sequence of positive integers
which is a representation of the periods when their furcation is arithmetic.
In Appendix B, we give expressions of the regions on which the one-
dimensional mappings are defined.

2. ISING MODEL ON A CAYLEY TREE

We consider the Cayley tree which has a central site 0 and N shells
surrounding it. The coordination number of the tree is assumed to be 3. We
label the shells in order from the outermost to the innermost, then the
central site is on the Nth shell. The sites except those on the Oth shell (the
Oth shell is referred to as the surface of the Cayley tree) have three
nearest-neighbor sites and those on the surface have only one nearest-
neighbor site. There is an Ising spin on each site. Each spin except on the
surface interacts with two nearest-neighbor spins by J > 0 and one nearest-
neighbor spin by —J. The spin directions are uniquely determined if the
direction of the spin at the central site is up and there is no external field;
there is frustration when the uniform external field is applied.

We introduce two types of effective fields 2™’ and A{ ™ to a site on the
sth shell from the outermost branch, depending upon whether the interac-
tion between the site and its nearest-neighbor site on the (s — 1)th shell is J
or —J. The effective fields 4{= are determined as follows:

exp(ZBhs(“) =Z 7 (+)/Z,) 7 (—)
exp(Z,Bhs(’)) =Z T (+)/Z1 ()
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where
Z (o) = Eexp[ Bo'(h +2h{H)) ~ ,BJOU’]
Z* (o) = zexp[ Bo'(h + K+ A Z)) + BJoo']

h is the uniform external field and 8=1/kT as usual hgfﬁ jy are the
effective fields on a site on the (s — 1)th shell from the outermost branch.
The iterative equations determining the effective fields are given by

A = B~ 'tanh™ [ tanh( B ytanh B(h + A1) + K(T))]
2.1
R = —B“tanh“‘[tanh( BJ ytanh B(h +2h§f]))] @4

At the surface, i.e., s = 0, we assume h${™) = 0. This set of equations is a set
of nonlinear, coupled, iterative equations. We are interested in the behavior
of effective fields in the limit of N > 0.

In order to investigate the mapping (2.1), we introduce new variables
x, = tanh BA{®, y, = tanh A7), a = tanh BJ and b = tanh Bh. Then we
have

xs = a(b + xsﬂl +.ys—l + bxs—lys—l)/(l + bxs—l + b)’sq + xs—lys—])
22)
ys=—a(b+2x,_, + bxsz_l)/(l +2bx, |+ xsz_l)

where x; = y, = 0. Equations (2.2) are expressed as follows:

(xs’)’s) =\Il(xs—l’.ys—l) =\I’k(xs—k’ys—k) (23)

An orbit is given by Q= {(x,, y,)};-0.12. ... The orbit is periodic if it is
finite. The period is defined by the least integral p such that there exists an
integral M and for any integral i > M, (x;, ,, y;4,) = (x;, y))-

There is only one fixed point (x_, y.) of the mapping (2.3). x, is
determined as the positive root of the equation:

b(1 — a)x*+ (1 — 3a + 2b> — ab® + a’p?)x* + 3b(1 — a)’x?
+(1—a—3ab’+2a* + a’)x —ab(l —a)=0 (2.4
¥V 18 given by
Voo = —a(b+2x, 4+ bxl)/(1+2bx,, + x2) (2.5)

These equations (2.4) and (2.5) are equivalent to those obtained by
Morita.”® By expanding x, and y, around the fixed points, we find the
region where the fixed point is stable. The region is determined by the
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following condition:
2d,.d_<1

where

dy=a(l—x)1=b%/(1+bx, + by, +x,y,)

d_=a(1— x3)(1 = 6%)/(1+2bx, + x%)

This region is the hatched one with number 1 in Fig. 1. The spin state in
this region corresponds to the paramagnetic state. When 2 =0, x_ =y
=0, and d, = d_ =tanh BJ. The critical temperature 7, between the
paramagnetic phase and the other phase is given by

J/kT, = tanh™'(1/42)

We obtained numerically the values of effective fields from the set of
equations (2.2). At low temperatures, Eq. (2.2) are not suitable for numeri-
cal calculations. Then we use the following expansions obtained from Eq.

1.0
h 0.8 .,
T 13
0.6
0.4 2’3/17
-28
0.2
39
28
0.0 17, L 11
c.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
kT
J

Fig. 1. The phase diagram in the temperature-field plane is shown. We have periodic orbits
in the hatched regions. The number attached to the region shows the period of orbits. We have
longer periodic or aperiodic orbits in the regions not hatched.
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2.1):
MH:%UJ+h+m“+h§4~V O )

+ B2

s—1

1yl
1 2( ) [exp(—-Z,Bn|J+h+h(+)

n--l

—exp(—2BnlJ — h — B2~ h}:ﬂ)]

M>-_~Uj+h+mﬁn—u—h—mﬁm
+ LS (—b° —2Bn|J + b+ 2h(H)
Eﬁn§1 n! [exp( il S-II)

— exp(—2pn|J — h — hs(fl)l)]

We found periodic orbits in some regions in the 7-4 plane. Some of them
are shown in Fig. 1 by the hatched regions. For an aperiodic orbit, we have
an attractor which seems to be a continuous closed curve. For a periodic
orbit, it collapses to a discrete set of points. In the numerical calculations,
we cannot discriminate between a longer periodic orbit and an aperiodic
orbit. In order to find boundaries in the T — A plane at which an aperiodic
orbit turns to a periodic orbit, we calculated the Lyapunov exponent
defined by Vannimenus'® and obtained a negative exponent for a periodic
orbit and zero for an aperiodic orbit. However, we failed to find the
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Fig. 2. The autocorrelation functions of x, and y, are shown as a function of shell number m
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boundaries. It turned out by further calculations for values of effective
fields with more decimal places for 7" and A that the regions for periodic
orbits intervene between those for an aperiodic orbit in whisker shapes and
vice versa, as partly seen in Fig. 1. We did not show there the regions for
longer periodic orbits. Then in the regions which are not hatched, there
exist longer periodic or aperiodic orbits.

In a prevous letter,’” a spin state determined by a periodic orbit is
called a spin-crystal state and that by an aperiodic orbit the spin-glass state.
In order to see the behavior of effective fields in the region of longer
periodic or aperiodic orbits, we define autocorrelation functions of x, and y,
as follows:

N
. 1 — -
C+(m)=/}1—1>20 v 2 (Xms; — X)(x; — X)
5=
N

=
where
o1
= dm N 2%
N
y=lm & >

0.6

0.4

0.2

Cum)

0.0 =Y

~0.4

-0.6 | | |

1000 1010 1020

Fig. 3. The autocorrelation function of x; is shown as a function of shell number for values
of temperature k7/J = 0.5, 0.7, and 0.9 at a fixed external field A/J = 0.5.
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C, (m). For example, see Fig. 2, where we show the behavior of C (m)
and C_(m) for h/J =0.5 and kT /J = 0.6. Thus we consider only C, (m)
hereafter. In Fig. 3, we show C_(m) and C, (m + 1000) for kT/J = 0.5,
0.7, and 0.9 and for 2/J = 0.5. We see from Fig. 1 that C, (m) is periodic
for kT/J =0.5 and h/J =0.5. We believe that the amplitude of C_ (m)
does not decay as a function of m even for aperiodic cases, although
whether an orbit is periodic with long period or aperiodic is hard to
determine by numerical calculations. In Fig. 4, we show C_(m) for
h/J =0.1, 04, and 0.7, and for kT/J = 0.5. C, (m) is aperiodic but seems
to be almost periodic. In case where C (m) changes its sign as a function
of m, we regard the quantity defined by the following equation as the wave
number:

N
g= lim = 3 0(=C.(m)C.(m+1)
where #(x) =1 for x >0, 1/2 for x =0, and 0 for x < 0. We set g = 1
when the fixed point is stable. In Fig. 5, we show ¢ ™' as a function of
temperature for A/J =02, 04, 0.6, and 0.8. In the regions of periodic
orbits, the effective fields are commensurate with shell number and in the
regions of aperiodic orbits, the effective fields are incommensurate. In Fig.
6, we show q“ as a function of external field for k7/J =0, 0.2, 04, 0.6,
and 0.8. Regions of & where the effective fields are commensurate are

KT=0.5J

o8 I f I
h=01J —  h=04J —~~ h=0.7J ——

Fig. 4. The autocorrelation function of x, is shown as a function of shell number for values
of external field h/J = 0.1, 0,4 and 0.7 at a fixed temperature kT/J = 0.5.
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Fig. 5. The inverse of the wave number is shown as a function of temperature for values of
external field #/J = 0.2, 04, 0.6, and 0.8.
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Fig. 6. The inverse of the wave number is shown as a function of the external field for values
of temperature kT /J = 0.0, 0.2, 0.4, 0.6, and 0.8.
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dominant at low temperatures, but those where the effective fields are
incommensurate are dominant at high temperatures. This is due to the
competition between the ordering energy and the thermal agitation. At
T =0 in Fig. 6, ¢~ ' has several jumping points forg ™' > 7. We will discuss
the case of T = 0 in the next section.

3. EFFECTIVE FIELDS AT T'=0

In the present section we investigate the behavior of effective fields at
absolute zero temperature. At T =0, equations (2.1) are reduced to the
following ones:

KO =3+ h+ B2+ ) =T = h = B2 — K2}

R = = LT+ h+ 2R —|J — h = 2R3

s—1

(3.1)

with A§*) = 0. We performed numerical calculations of this set of iterative
equations for h < J. The period of orbit {(A{*),h{ N}, o, .. with
h{*) =0 is given in Table 1. The critical values of 4 at which the period

Table I. The Critical Values of / at which the Period
Changes Listed up to the Fourth Decimal Place

h/J Width P g~
0.0244—0.1001 0.0757 17 5.667
0.1001—0.1004 0.0003 45 5.625
0.1004—0.1098 0.0094 28 56
0.1098—0.1110 0.0012 39 5.571
0.1110—0.1111 0.0001 50 5.556
0.1111—0.1112 0.0001 61 5.545
0.1112—0.2308 0.1196 11 5.5
0.2308—0.2309 0.0001 50 5.556
0230902311 0.0002 39 5.57)
0.2311-0.2333 0.0022 28 56
0.2333--0.2334 0.0001 45 5.625
0233402478 0.0144 17 5.667
0247802497 0.0019 23 5.75
0.2497—0.2500 0.0003 29 5.8
0.2500—0.5385 0.2885 6 6
0.5385—0.5386 0.0001 31 6.2
0.5386—0.5393 0.0007 25 6.25
0.5393—0.5434 0.0041 19 6.333
0.54340.5435 0.0001 3 6.4
0.5435—0.5671 0.0236 13 6.5
0.5671—0.5672 0.0001 33 6.6
0.5672—0.5708 0.0036 20 6.667
0.5708—0.5714 0.0006 27 6.75
0.5714—0.5715 0.0001 34 6.8

0.5715—0.6667 0.0952 7 7




Table l. (Continued)

h/J Width P g7}
0.6667—0.6875 0.0208 14 7
0.6875—0.6876 0.0001 7 7
0.6876—0.6925 0.0049 14 7
0.6925—0.6927 0.0002 29 7.25
0.6927—0.6931 0.0004 14 7
0.6931—0.6942 0.0011 22 7.333
0.6942—0.6961 0.0019 14 7
0.6961—0.6962 0.0001 37 7.4
0.6962—0.6963 0.0001 14 7
0.6963—40.7001 0.0038 15 7.5
0.7001—0.7008 0.0007 30 7.5
0.7008—0.7012 0.0004 14 7
0.7012—0.7013 0.0001 67 7.444
0.7013—0.7014 0.0001 37 7.4
0.7014—0.7102 0.0088 14 7
0.7102—0.7103 0.0001 67 7 444
0.7103—0.7110 0.0007 14 7
0.7110—0.7112 0.0002 23 7.667
0.7112—0.7135 0.0023 14 7
0.7135-—-0.7136 0.0001 3R 7.6
0.7136—0.7500 0.0364 14 7
0.7500—0.7501 0.0001 7 7
0.7501—0.8000 0.0499 14 7
0.8000—0.8001 0.0001 7 7
0.8001—0.8125 0.0124 14 7
0.8125—0.8126 0.0001 15 7.5
0.8126—0.8400 0.0274 14 7
0.8400—0.8401 0.0001 7 7
0.8401—0.8425 0.0024 14 7
0.8425--0.8426 0.0001 29 7.25
0.8426—0.8450 0.0024 14 7
0.8450—0.8451 0.0001 22 7.333
0.8451—0.8500 0.0049 14 7
0.8500—0.8501 0.0001 15 7.5
0.8501—-0.8700 0.0199 14 7
0.8700—0.8701 0.0001 23 7.667
0.8701—0.8750 0.0049 14 7
0.8750—0.8751 0.0001 7 7
0.8751—0.8800 0.0049 14 7
0.8800—0.8801 0.0001 15 7.5
0.8801—0.9000 0.0199 14 7
0.9000--0.9001 0.0001 7 7
0.9001--0.9200 0.0199 14 7
0.9200—0.9201 0.0001 8 8
0.9201—0.9250 0.0049 14 7
0.9250—0.9251 0.0001 15 7.5
0.9251—0.9375 0.0124 14 7
0.9375—0.9376 0.0001 7 7
0.9376—0.9400 0.0024 14 7
0.9400—0.9401 0.0001 15 7.5
0.9401—0.9500 0.0099 14 7
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changes are listed up to the fourth decimal place in Table I for 4 between
0.0244J and 0.95J. We express in Table I that the period p, appears at each
value of & such that h,h; + Ah, .. ., b, — Ah when the row is k) — h,, AR,
P19 . We see that the behavior of the period as a function of A changes at
0.6667J. For h < 0.6667J, it seems that we have arithmetic furcations of
period. Here the arithmetic furcation of the period means that a periodic
orbit of period m, + m, appears at value of &’ satisfying s, < h" < h, where
h, and A, are fields for which orbits of period m, and m,, respectively, are
stable. For A < 0.0239J, although we do not give the results in Table I, we
seem to have P(6m + 11,6m + 17) with m = 1,2, . .. . See Appendix A for
the definition of a sequence P(m,m’"). For & > 0. 75] we found a regularity
in the results; a set of periods for 0.75J < h < 0.95J appears repeatedly in
the following ranges with N = 1,2, . . .:

N N+1
0.75 + 2 02" < h/J <075+ 2 0.27
n=1 n=1

We therefore do not place the results for 2 > 0.95J in Table 1.
We denote equations (3.1) as follows:

(A7 H) = S(HE Y = D1 )

where @ is a continuous and piecewise linear mapping. When 4 < J, we
have an unstable fixed point (0, —%). When & = J, we have a line of stable
fixed points expressed by the set {(x, y)|0<x<J, y=—J}. When
h > J, we have a stable fixed point (J, —J). Thus we investigate in detail
only the case of A < J.

We define the following regions E, E;, and X:

E= {(x,y)|[x+y+h|<.J, 12x + h| < J}
Es={(x)(x,y)EE |y+h—x|<J, |x +y+3h/2| <J/2}
K={(x, pllxI<J,y=~J}

Every point (x, y) in R? — E5 is mapped into the region K within five
operations of the mapping. Every point of E; is mapped into E and then

possibly to a point in Ej itself. When points (h{}),h{;)) are in E; for
j=0,1,2,...,1—1, then hs(;']) forj=12,...,1 take the followmg forms:
hifl = ap b+ ap (BT + h)
h;) = —2a, k") - 2a (h( )+ h)—
Here g, are determined by the recurrence equation:

QGir=apy — 24
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with ¢, =0 and a, = 1. g, is expressed as follows:

a = L pamas Dsin(/ — 1)8

V1

where
7

22
Then the point (h¢}),h¢;}) satisfies the relation:

# = sin

DHGEY + B W)+ ) + (RG] + by’
= 22K 4 HO(R) + k) + (W + )
Thus there exists for each point (h{*),h{ 7)) in E5 a number N such that

~ 2 2
N =log 2 +5W +4J -1
2R+ B (BT + Y + (BT + k)

and the point (A}, h{;)) for j > N should already be outside of Es. In this

s+j° s+
way, every point irJ1 R? éxcept the unstable fixed point (0, — 4) is mapped to
the set K.
We consider a projection of the two-dimensional mapping @ to a
one-dimensional mapping ¢, defined by

K= au(h) (32)
Here Eq. (3.2) denotes the following equation:
(KL hSG )= —T) = SR, b = =)

where we assume that Ay} # —J for 1 < j < k. In Eq. (3.2), the subscript
k of g, is also a function of A{*). The periodic orbit of 4{*) determined by
(3.2) is (AL RE) BE) whys - - - ). Obtaining the ¢, is elementary but
tedious. We give only the results. We consider 15 regions R, R,, ..., Ry
in the # — x plane which are shown in Fig. 7; their expressions are given in
Appendix B. g, is given on these regions as follows:

¢=x—J+hinR,, gs=JinR,, @s=4x —J +4hin R,
ps=J—2hinR,, @s=6x —J+2hinRs, ps=5x+J— hin Ry
ps=2x+J—4hin R;, @, =4x+J—2hin Ry, @, =Jin R,
gs= —x+3J—3hin Ry, ¢, =2x+3J—-2hin R,

g, =4x +3Jin Ry, ¢, =J—2hin R, p;=JmmR,
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Fig. 7. The regions in the A-x plane are shown. At each region, we have a different, one-
dimensional mapping g, .

and
@3=—3x+J— hin R;

The function g, is piecewise linear for —J < x < J at a fixed 4.

¢, is shown by solid lines in Figs. 8a—1 for A = 0.1/, 0.11J, 0.2/, 0.24J,
0.3J, 04j, 0.5J, 0.6/, 0.7J, 0.8/, 0.9J, and 0.91J, respectively. The pro-
cesses of the mapping are shown by the broken lines. Suppose that a
broken line starting from a point belonging to the set of periodic points
visits ¢, 7, times before it comes back to the starting point; then the period
is given by

p=v +4r,+ 5v;4

For example, we have period 39 and 11 in Figs. 8b and 8c, respectively,
and period 7 and 14 in Figs. 8k and 8], respectively.

First we consider the cases of 0 < h < 7J/13. In Figs. 8¢, 8d, and 8e,
we show how an orbit of period 17 is obtained between the orbits of period
11 and 6. We notice that there are several types of periodic orbit with the
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same period. For example, there are three types of periodic orbit of period
11: {(J,h,—J +8h, =2J +9h}, {J,h,J —2h, —h}, and {J — 2h, —h,J —
64, —5h}. Since the number of times of visiting the dangler of ¢, changes
with the values of 4, we obtain a sequence of periods P(11,6) for J/9< h
< 7J/13. Similarly, we obtain a sequence of periods P(17,11) for J /41 < A
< 3J /13, a sequence of periods P(23,17) for J /169 < h < J/10 and so on.
As an example, we show in Fig. 8b an orbit of period 39 which is obtained
between the orbits of period 28 and 11; the orbit of period 28 is obtained
between the orbits of period 17 and 11 in Figs. 8a and 8c, respectively. We
have the following relations from Eq. (Al):

P(11,6) = P(11,17) + P(17,6)
= P(11,17) + P(17,23) + P(23,6)

N
= lim { > P11 +6(j —1),11+6j) + P(11 + 6N,6)}
00 j=1

This relation is confirmed in Table I in the range of A: 0.1112J < h <
0.5385J. Second, we consider the case of J/4 < h < 2J/3. As seen from
Figs. 8e-h, ¢, in R}, s in R,, ¢; in R, and ¢, in Ry determine the orbits,
Since the number of times of visiting the dangler of ¢ changes with the
value of h, we obtain a sequence of periods P(6,7) for J/4 < h < 2J/3.
Lastly, we consider the case of 2J/3 < h < J. As shown in Figs. 8i-1 we
encounter a new situation. We have the ¢, in R,,, which is a line with slope
— 1. As the external field increases, only this part survives for ¢,. This ¢,
stabilizes orbits with periods 14 and 7. Thus the arithmetic furcation due to
the @5 in R, is “screened” by the ¢, in R;,. We call this phenomenon a
“screening” of the furcations. This is seen for 2J /3 < h < J.

The inverse of the wave number, ¢~ ! defined in Section 2 is expressed
as follows:

g '=p/(vs+vs)
1

g~ is also given in Table I. The generation of several jumping points at
T = 0 in Fig. 6 mentioned in Section 2 is now understood.

4. CONCLUDING REMARKS

In the present paper, we have investigated the behavior of effective
fields for the regular Ising model with nearest-neighbor interactions of
J >0 and —J on the Cayley tree of coordination number 3 under the
uniform external field. The frustration effects between the exchange inter-
actions and the uniform external field produce curious behaviors of the
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effective fields; the effective fields have periodic and aperiodic structures as
a function of shell number. At T'= 0, only periodic structures appear. The
period of the effective fields furcates as a function of the external field.
There are the arithmetic furcations and the “screening” of the furcations in
the present systems. The arithmetic furcation is popular in physical systems
with frustration (see, for example, Aubry,'? Bak,!'»and Aubry!'¥),

It is confirmed by numerical calculations that the screening of the
furcations also occurs at finite temperature, more precisely at the low-
temperature region surrounded by that of period 7 in Fig. 1. We believe
that the screening of the furcations is a new type. It would be much more
interesting if the screening of the furcations occurs in more realistic
systems. As mentioned by Morita,” the system studied in the present
paper is regarded as a model for the Ising model on the honeycomb lattice
in which each ferromagnetic hexagon is connected to the surrounding six
ferromagnetic hexagons by antiferromagnetic bonds. Here the ferromag-
netic hexagon means that each bond in the hexagon is ferromagnetic. It is
expected that the screening of the furcations occurs in that Ising model on
the honeycomb lattice. Investigations of such system are left to future
works.

APPENDIX A

We define sequences of positive integers related to two different
positive integers, m and »/, in this appendix.

Consider a sequence {m,m’} and denote it by Py(m, m’). Let us call m
and m’ a successive pair in Py(m, m’). We insert m + m’ between m and m’
and obtain a new sequence {m,m + m’,m’}. We denote it by P,(m, m’). Let
us call m and m+ m’, and also m+ m’ and m’ successive pairs in
P (m,m’). For every successive pair m, and m, in sequences P,(m,m’), we
calculate m; + m, and insert it between m,; and m,. Then we obtain a new
sequence P, ,(m,m’). Let us call m; and m, + m,, and also m; + m, and
m,, for each successive pair m, and m, in P,(m,m’), successive pairs in
P, (m,m’). In this way, we can define sequences Py(m,m’), P,(m,m’),
P,(m,m"), ..., inductively. Finally, we define an infinite sequence of
positive integers by

P(m,m’y = nlggloPn(m,m )
We define an addition of two sequences P,(m,m + m') and P, (m + m',m’)

by
P (m,my= P, (m,m+ m)+ P,(m+ m,m)
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Then we have the following relation:
P(m,m'y=P(m,m+ m’)+ P(m+ m',m’) (A1)

We look into the structure of the sequence P(m,m’), then we find
infinitely many arithmetic progressions in P(m, m’). When the period of the
oribit in a mapping takes on all the numbers in the sequence P(m,m’) as a
function of parameter involved in the mapping, we say that an arithmetic
furcation of period takes place between m and m’ as a function of the
parameter.

APPENDIX B

We give the expressions of 15 regions, which are shown in Fig. 7, in the
following:

Ri={0<h<J,(J—h)/2<x< T}

R={x J=-h/2x>J/2—h x> —h)/3,x>h/5}
Ry={x<J/2=h,x>(J—=3h)/2,x > h}
Ry={h>0,x<(J—3h)/2,x > h)

Ri={x<hx<(J—h)/3,x<2]=3h,x>(J—3h)/2,x >(J - h)/6)}
={x<h/5 x<(J—h)/2,x>2]—=3h,x>(J - h)/6}

R={x< < —=3h)/2,x> —h,x >(—J +5h)/2}
—-{h>0x —h,x >(—J +3h)/4}
={0<h<J/T,x<(=J+3h)/4, x> —-J/2}

+{x\(—-J+5h)/2x (J — h)/6,
<2 =3h,x> —J/2, x> —-J+h)

Rig={x<(J—h)/6,x>2]=3h, x> —h/3,x>3(—J+h)/2}
Ry={x<—-J+hx<—-h/3,x>—hx>3(-J+h)/2}
Ry={x< ~J/2x< =h x> —(J +h)/2,x >(=3] + h)/4)

={0 <h<J/3, —T<x< —(J+h)/2)

Ry={J/3<h<3J/5 —J<x<(=3J+h)/4)
+{3J/5<h<J,x<3(=J+h)/2,x<=h/3,x>~T)}
={h<J,x<3(=J+h)/2, x> —h/3}
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